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SUMMARY

The genetic case–control association study of unrelated subjects is a leading method to identify single
nucleotide polymorphisms (SNPs) and SNP haplotypes that modulate the risk of complex diseases.
Association studies often genotype several SNPs in a number of candidate genes; we propose a two-
stage approach to address the inherent statistical multiple comparisons problem. In the �rst stage, each
gene’s association with disease is summarized by a single p-value that controls a familywise error
rate. In the second stage, summary p-values are adjusted for multiplicity using a false discovery rate
(FDR) controlling procedure. For the �rst stage, we consider marginal and joint tests of SNPs and
haplotypes within genes, and we construct an omnibus test that combines SNP and haplotype analysis.
Simulation studies show that when disease susceptibility is conferred by a SNP, and all common SNPs
in a gene are genotyped, marginal analysis of SNPs using the Simes test has similar or higher power
than marginal or joint haplotype analysis. Conversely, haplotype analysis can be more powerful when
disease susceptibility is conferred by a haplotype. The omnibus test tracks the more powerful of the
two approaches, which is generally unknown. Multiple testing balances the desire for statistical power
against the implicit costs of false positive results, which up to now appear to be common in the
literature. Published in 2005 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Following the completion of the human genome reference sequence, large-scale resequencing
projects have identi�ed large numbers of polymorphisms [1] in the form of single nucleotide
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polymorphisms (SNPs) [2] and SNP haplotypes [3]. In principle, this knowledge allows studies
to associate genetic polymorphisms with disease informed by a comprehensive understanding
of human genetic variation [4–9]. Whole-genome association studies have also been pro-
posed [10–12].
Despite the possibilities of whole-genome analysis, for reasons of cost and statistical e�-

ciency [13], case–control analysis of speci�c candidate genes will likely remain a mainstay
approach. It is clear, however, that many studies will consider, if not the whole genome, at
least whole panels of genes, for example, panels of DNA repair genes or genes that function
in speci�c aetiological pathways.
As SNP association data accumulates, statisticians will increasingly be called upon to assist

in the analysis. At our institution, a number of genetic case–control association studies are
in progress. The data sets of these studies typically contain at least a few SNPs in each of
several candidate genes. As genotyping technologies advance, it may become cost-e�ective
to genotype all common SNPs in candidate gene or gene region. The SNPs within each
gene are typically correlated because of linkage disequilibrium (LD). Often, the correlation
is high, making it di�cult to discern which of a number of tightly linked SNPs might be
directly associated with case–control status. When this is the case, one logical focus of a
SNP analysis is to detect whether any SNP is associated with case–control status. The SNP
variants in di�erent genes may or may not be correlated, depending on the relative positions
of the genes in the genome.
This organization—numerous SNPs within genes, and genes within panels—naturally lends

itself to a two-stage analysis. In the �rst-stage analysis of each candidate gene, it is desirable
to summarize the evidence for association using a summary p-value that combines evidence
for association over a number of variants. For this purpose, there is interest both in SNP-
based associations and haplotype-based associations [14–18]; frequently, both approaches are
investigated. Ideally, the summary p-value should re�ect both analytical approaches if both
are performed. In the second-stage analysis of gene panels, it may be desirable to adjust the
summary gene-level p-values for multiple comparisons, using an approach that controls an
appropriate type I error rate. In both stages, there is an inherent multiple comparisons problem,
one that has been widely recognized to be a looming issue [19–21].
In this study, we adapt some modern multiple comparisons procedures [22] to tackle the

multiplicity issue inherent in each stage of the analysis. For the �rst stage, we adapt the
Simes test [23] to the problem of combining multiple single-locus marginal SNP tests within
a candidate gene, and we construct an omnibus test that combines the Simes test of SNPs
with a joint test of haplotypes. For the second stage, we consider false discovery rate (FDR)
controlling multiple comparisons procedures [24]. To explore the operating characteristics of
these tests, we develop an approach to simulate case–control studies of a candidate gene that
incorporate empirical haplotype frequencies and patterns of LD, and we evaluate the power of
testing procedures using simulation studies conducted over a panel of nine candidate genes.

2. METHODS

2.1. Multiple testing strategies for a single candidate gene
A primary goal of many candidate gene studies is to identify whether any sequence variation
in a queried gene or gene region is associated with disease. To avoid obtaining a false
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negative result, many studies consider both SNP- and haplotype-based associations. SNP-
based associations are biologically plausible on the causal hypothesis and on the proximity
hypothesis, i.e. because the tested SNP has a direct e�ect on disease susceptibility or because it
is in LD with another SNP, insertion or deletion polymorphism, etc. that does [25]. Haplotype-
based associations may also be biologically plausible, because haplotypes encode the units of
transcription. The two approaches are not equivalent because SNPs frequently travel on more
than one common haplotype. Whichever approaches are considered, it appears desirable to
control the familywise error rate (FWER), de�ned as the probability of falsely declaring that
any tested feature in the gene is associated with case–control status.
Therefore, we �rst consider four testing approaches: marginal and joint tests of SNPs, and

marginal and joint tests of haplotypes. For haplotype analyses, our primary simulation studies
will evaluate ideal tests that incorporate phase-known haplotype data, because this de�nes the
best-case scenario for haplotype analyses. In selected situations, we study haplotype analysis
of unphased SNP genotype data, using a method described by Lake et al. [26] to account for
phase ambiguity.
To de�ne the statistical models and test statistics, let Yi; i=1; : : : ; n1; n1+1; : : : ; n1+n0 equal

1 for the n1 cases and 0 for the n0 controls, so that n= n1 + n0 is the total sample size.
Consider a gene with m SNPs and p haplotypes. Let XG be the genotype scoring matrix
with rows xGi ; i= 1; : : : ; n and elements xGi; j ; i=1; : : : ; n; j=1; : : : ; m such that xGi; j=0; 1, or 2
if subject i has 0; 1, or 2 copies of the variant allele for SNP j. It is arbitrary which allele
is scored as the variant. Let XH be the haplotype scoring matrix with rows xHi ; i=1; : : : ; n
and elements xHi; k ; i=1; : : : ; n; k=1; : : : ; p such that xHi; k =0; 1, or 2 if subject i has 0; 1, or
2 copies of haplotype k. Because each subject is diploid, XH1p=21n, where 1l denotes a
column vector of l ones.
For SNP-based analysis, we consider a joint co-dominant logistic model for SNPs

M SNP
Joint : logit P(Yi=1|xGi )= �0 + �1xGi;1 + · · ·+ �mxGi;m

and test for the signi�cance of the m SNPs versus the null model with only an intercept term
by comparing the corresponding likelihood ratio test statistic against a �2 distribution with
m degrees of freedom. More generally, the model might adjust for design and environmental
factors. The �-coe�cients measure the change in the log odds of disease per copy of each
SNP, controlling for all other SNPs. We call the p-value obtained from this procedure pSNPJoint.
If a single SNP is causally associated with disease, the joint model and its omnibus test on

m degrees of freedom may not be very powerful. For these scenarios, a marginal test may be
more sensitive. Therefore, we consider the corresponding sequence of marginal models

{M SNP
j }mj=1 : logit P(Yi=1|xGi; j)= a0; j + bjxGi; j

and the corresponding sequence of single-SNP likelihood ratio tests, each on one degree
of freedom. The b-coe�cients measure the change in the log odds of disease per copy
of each SNP, marginally over all other SNPs. For each SNP we obtain a two-sided p-
value. From the complete array of m SNP genotypes, we obtain a realization of the ordered
p-values p(1); p(2); : : : ; p(m), with p1 the p-value for the most signi�cant SNP and p(m) the
p-value for the least signi�cant SNP. To control the gene-wide type I error rate, we apply
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the Simes test [23] to the array of single-SNP trend tests. Formally, de�ne

pSNPMarg = min
(
1;min
16k

{
p(k)

m
k

})

this expression equals the Simes adjusted p-value for the most signi�cant SNP. At level �,
the Simes test rejects the complete null hypothesis if pSNPMarg6�. The Simes test can be more
powerful than the classical Bonferroni test, especially when the test statistics are positively
correlated [23]. When there is both positive and negative correlation, the Simes test may
be too liberal, but studies suggest that the exceedance of the nominal level will usually
be modest [27–29].
The logic underlying the haplotype-based tests is similar. We consider a joint co-dominant

logistic model for haplotypes

MHap
Joint : logit P(Yi=1|xHi )= �0 + �2xHi;2 + · · ·+ �pxHi; p

and test for its signi�cance by comparing the corresponding likelihood ratio test statistic
against a �2 distribution with p − 1 degrees of freedom. The haplotype scored in the �rst
column of XH serves as the referent haplotype. The �-coe�cients measure the change in the
log odds of disease for subjects with one copy of the corresponding haplotype and one copy
of the referent haplotype, compared to persons with two copies of the referent haplotype. The
observed p-value associated with this procedure is pHapJoint.
Similarly, we consider the corresponding sequence of marginal models

{MHap
k }pk=1 : logit P(Yi=1|xHi; k)= c0; k + dkxHi; k

and the corresponding sequence of single-haplotype likelihood ratio tests, each on one degree
of freedom. The d-coe�cients measure the change in log odds of disease for persons with
one copy of the corresponding haplotype and one copy of any other haplotype, compared to
persons with two copies of any other haplotype. We adjust the p single-haplotype tests for
multiplicity using the Simes testing approach, obtaining pHapMarg, the summary adjusted p-value
for the most signi�cant haplotype.
In practice, the genetic mechanism conferring disease susceptibility may be uncertain. For

this situation, we propose a composite omnibus test using the test statistic

omni= min(pSNPMarg; p
Hap
Joint)

In this test, we combine a marginal model for SNPs with a joint model for haplotypes; these
models are often of speci�c epidemiological interest a priori. In general, other models could
be combined, although use of the joint model for SNPs requires that subjects have complete
genotype data for all SNPs. We compute the distribution of the omnibus test statistic under
the complete null hypothesis from the permutation distribution obtained by shu�ing case and
control indicators. We reject the null if the observed value of omni is less than or equal
to the �-level quantile of the null distribution. For computational e�ciency, we also con-
sider an approximate omnibus test obtained by applying the Bonferroni correction to the two
p- values pSNPMarg and p

Hap
Joint. The approximate omnibus test statistic is

p̃omni = min(1;min(2p
SNP
Marg; 2p

Hap
Joint))

and we reject the null if p̃omni6�.
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2.2. Multiple testing strategies for a panel of candidate genes

To test a panel of G candidate genes in a single study, one might choose to apply a FWER
procedure to the summary p-values obtained from the �rst-stage analysis, as described else-
where [30]. We propose here to control the expected FDR using the Benjamini–Hochberg
FDR procedure (BH-FDR) [24].
Speci�cally, let pSNPMarg; p

SNP
Joint ; p

Hap
Marg; p

Hap
Joint, or pomni be summary gene-wide p-values for can-

didate genes g; g=1; : : : ; G, as de�ned previously. Generically, let the summary p-value for
gene g; g=1; : : : ; G be pg. To control the expected FDR at the gene level, we apply the BH-
FDR procedure to the ordered summary p-values p(1); : : : ; p(G), where p(1) is the p-value of
the most signi�cant gene in the panel and p(G) is the p-value of the least signi�cant gene in
the panel. The test statistics pg may or may not be independent under the null; genes with
SNPs in LD will not have independent test statistics.
To point to particular genes that are associated with disease, we use the FDR-adjusted

p-values [31]

p̃(g) = min
(
1;min

g6r

{
p(r)

G
r

})

and declare a gene to be signi�cantly associated with disease at FDR level q if its adjusted
p-value is less than or equal to q. Clearly, the more powerful the FWER procedure we can
apply to each gene, the more powerful will be the FDR procedure we can apply to the panel.
The BH-FDR procedure will control the expected FDR for any con�guration of genes that

are associated with case–control status, so long as the test statistics of the non-associated
genes are independent [24] or positively dependent [32, 33]. When analysing genes that are
not associated with disease and that are not in LD for any reason (i.e. genes on di�erent
chromosome arms or chromosomes), one- or two-sided test statistics should be independent,
and the BH-FDR procedure will control the expected FDR.
The situation is more complicated for tightly linked genes that each might have an inde-

pendent e�ect. Because SNPs can exhibit both positive and negative LD, one-sided tests will
also have positive and negative correlation under the null, and the BH-FDR procedure may
or may not provide FDR control. In this situation, the e�ect of negative LD should be min-
imized or removed for two-sided tests. However, negatively correlated two-sided tests might
be generated if disease susceptibility was modulated by a ‘liability score’ that depended on
the number of certain alleles that were present, rather than the speci�c alleles.

2.3. Haplotype structures and disease incidence models

We consider case–control association studies of unrelated subjects, where individual-level SNP
genotype data for all non-redundant SNPs in a candidate gene or gene region are available for
analysis. We study the idealized situation in which phase-known SNP haplotype data are also
available for analysis. We consider empirical patterns of LD of SNPs within a candidate gene,
and the empirical spectrum of haplotype frequencies, obtained from a resequencing study of
a panel of nine human candidate genes [34] (Table I).
In this panel, the number of identi�ed SNPs ranges from 6 to 22, the number of non-

redundant SNPs with a minor allele frequency ¿0:05 ranges from 3 to 10, and the number of
haplotypes with a frequency ¿0:05 ranges from 3 to 6. For each gene, the haplotype structure
can be encoded by a binary matrix H with rows that correspond to haplotypes and columns
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Table I. Characteristics of the nine-gene panel.

Number of
non-redundant
SNPs with Number

Number of minor allele of haplotypes
Number non-redundant frequency Number with

Gene Locus of SNPs SNPs∗ ¿0:05† of haplotypes f¿0:05‡

CASP8 2q33-q344 13 11 7 12 5
CASP10 2q33-q34 11 7 5 6 4
CFLAR 2q33-q34 6 4 3 4 3
CTLA4 2q33 12 9 9 11 6
GAD2 10q11.23 13 7 5 8 4
H19 11p15.5 13 10 9 15 5
INS 11p15.5 14 8 5 9 4
SDF1 10q11.1 22 11 10 10 6
TCF8 10p11.2 14 13 6 15 6

∗Redundant SNPs are in perfect LD with other SNPs.
†These SNPs are tested in the SNP-based analyses.
‡The haplotype frequencies f are here normalized to sum to 1. In the original resequencing studies some
haplotypes could not be determined. The normalized frequencies will be less than or equal to the frequencies
that were actually observed. For the joint model for haplotypes, rare haplotypes with normalized f¡0:05 are
pooled.

that correspond to SNPs. One haplotype (usually the most common one) is arbitrarily chosen
to be the reference haplotype, and Hh; j=1 if SNP j in haplotype h di�ers from SNP j in
the reference haplotype, 0 otherwise, h=1; : : : ; p; j=1; : : : ; m. The haplotype frequencies are
given by f. Haplotype structures for the nine-gene panel are shown in Figure 1. Of 59 variant
SNP alleles with a minor allele frequency ¿0:05, 28 (47 per cent) travel on 1 haplotype with
a haplotype frequency ¿0:05, 14 (24 per cent) travel on 2 such haplotypes, 10 (17 per cent)
travel on 3, and 7 (12 per cent) travel on 4 or 5. In terms of H and f, the proportion of
haplotypes carrying variant alleles at position i and j is �ij=

∑p
h=1fhHhiHhj, and the pairwise

correlation between SNPs is DCorrij =(�ij −�i�j)=[�i(1−�i)�j(1−�j)]1=2. The genes described
in Figure 1 show heterogeneous patterns of positive and negative LD; a number of genes
appear to have at least one block of high LD (data not shown).
We assume that disease susceptibility follows a prospective linear logistic model. We con-

sider co-dominant, dominant, and recessive models of SNP and haplotype e�ects. In simulation
studies for each gene, we evaluate scenarios where each SNP and haplotype in turn is asso-
ciated with disease with a relative risk (RR) of 1.5. The RR for the co-dominant models is
increased by the factors 1.5 and 1:52 =2:25, respectively, in persons who carry one or two
copies of the variant allele. Because many pairs of SNPs in these genes are tightly linked, the
increased risk conferred by any single SNP induces a complex pattern of association across a
number of other SNPs. Similarly, the increased risk conferred by any single haplotype induces
a complex association signal over a number of SNPs.

2.4. Simulation approach

For simulation studies of each gene, we generated cohorts of 100 000 individuals with hap-
lotypes assigned at random from H in proportions f assuming Hardy–Weinberg equilibrium.
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Figure 1. Haplotype structures in the nine-gene panel. Panels correspond to genes, rows to haplotypes,
and columns to SNPs. Grey indicates that the SNP allele matches the corresponding allele in the referent
haplotype in row 1. White indicates that the SNP allele di�ers from the corresponding allele in the
referent haplotype. The y-axis labels show normalized haplotype frequencies ¿0:05. Unlabelled rare
haplotypes are pooled in a joint analysis of haplotypes. For each gene, the SNP allele frequencies � are
determined from the binary haplotype matrix H and the haplotype frequency vector f by the formula
�=H′f. The x-axis labels identify the position of all SNPs with min(�j; 1−�j)¿0:05. Labelled SNPs

are included in SNP-based association analyses.

Then, for each individual, we generated a Bernoulli trial in which the probability of disease
was speci�ed according to the assumed linear logistic model. The baseline disease risk �0 (a
nuisance parameter) was set to 0.01 when n1 = n0 = 300.
Finally, we sampled n1 cases and n0 controls from each cohort to obtain a single case–

control sample. The sampling was repeated a large number of times B so that the statistical
power of the multiple test procedures could be estimated. The type I error rates were estimated
by simulating studies under the complete null. The output data sets included case–control
status, SNP genotypes, and true SNP haplotypes. Multiple test procedures were run on all SNPs
and haplotypes in each gene with a minor allele frequency ¿0:05, as indicated in Table I.

Published in 2005 by John Wiley & Sons, Ltd. Statist. Med. (in press)



P. S. ROSENBERG, A. CHE AND B. E. CHEN

We used a similar approach to simulate data from all nine genes considered as a panel of
independent candidates.

3. RESULTS

3.1. FWER control and power for tests of a single candidate gene

Table II shows type I error rates under the complete null for multiple test procedures applied
to simulated case–control data from the nine-gene panel. The nominal type I error rate was
0:05. The false positive rate is very high for SNP-based analysis if no corrections are made
for multiple comparisons, ranging from 18 to 45 per cent across the panel. In contrast, each
multiple test procedure controls the type I error rate close to or below the nominal level.
Next, for each gene, we simulated a sequence of non-null situations where each SNP or

haplotype in turn is associated with disease with RR=1:5. Figure 2 presents power curves
when disease susceptibility is conferred by a SNP with a co-dominant e�ect, and Figure 3
presents power curves when disease susceptibility is conferred by a haplotype with a co-
dominant e�ect. In these �gures, we consider joint and marginal tests of SNPs and haplotypes.
When disease susceptibility was conferred by a SNP (Figure 2), the marginal test of SNPs

had higher power than the marginal test of haplotypes, or else the power was similar. These
results present the best-case scenario for haplotype analyses because here the linkage phase is
known. There were di�erences in performance over and above the di�erences in the number
of degrees of freedom. For example, in CFLAR and TCF8, both the number of tested SNPs
and the number of tested haplotypes were equal, but the marginal test of SNPs dominated.

Table II. Single-gene analysis, type I error rates under the complete null.

Multiple test procedure∗

SNP tests Joint Marginal Joint test Marginal
uncorrected test of test of of test of
for multiple SNPs, SNPs, haplotypes, haplotypes Omnibus

Gene comparisons† pSNPJoint
‡

PSNPMarg
‡

pHapJoint
‡

pHapMarg
‡

test§

CASP8 0.331 0.057 0.040 0.055 0.051 0.054
CASP10 0.216 0.056 0.045 0.056 0.047 0.050
CFLAR2 0.177 0.061 0.044 0.061 0.041 0.056
CTLA4 0.258 0.055 0.041 0.055 0.048 0.048
GAD2 0.288 0.054 0.044 0.057 0.045 0.050
H19 0.230 0.060 0.038 0.055 0.049 0.054
INS 0.259 0.055 0.044 0.053 0.048 0.054
SDF1 0.336 0.056 0.043 0.054 0.047 0.046
TCF8 0.453 0.050 0.042 0.052 0.052 0.049

∗Details of the procedures are given in Section 2. The nominal � level for each procedure was 0.05.
†In the uncorrected analysis, a gene is declared to be associated with disease if any single-SNP likelihood
ratio trend test is signi�cant at the nominal 0.05 level without adjustment for multiple comparisons. These
‘per-comparison error rates’ were estimated from B=10 000 replications.

‡These type I error rates were estimated from B=10 000 replications.
§For each replication, pomni was estimated from 1000 permutations, and the type I error rate was estimated
from B=1000 replications.
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Figure 2. Power curves for marginal and joint genetic association tests when disease susceptibility is
conferred by a SNP with a co-dominant e�ect. Panels correspond to genes, and ordinates to power.
Within panels, each abscissa value indexes a situation, arranged from the least common to the most
common SNP in the gene. In each situation, RR=1:5 per copy of the variant SNP, and studies of
n1 = n0 = 300 cases and controls were assessed. Power curves are shown for the marginal and joint
tests of SNPs, and for the ideal marginal and joint tests of haplotypes based on phase-known data. For

each situation, power was estimated from B=1000 replications.

In all nine genes, the marginal test of SNPs was more powerful than the joint test of SNPs, but
frequently, the marginal test of haplotypes was less powerful than the joint test of haplotypes.
Conversely, when disease susceptibility was conferred by a haplotype (Figure 3), the

marginal test of haplotypes had higher power than the marginal test of SNPs, or else the
power was similar. These scenarios were favourable to haplotype analysis, because, with
the exception of CFLAR and TCF8, the genes had fewer haplotypes than SNPs, and the
linkage phase was known. Nonetheless, in some con�gurations, the increase in power of the
marginal test of haplotypes versus the marginal test of SNPs was substantial, as much as 38
percentage points. Therefore, in 14 situations where the power of the marginal test of haplo-
types exceeded the power of the marginal test of SNPs by 5 or more percentage points, we also
evaluated the corresponding marginal test of haplotypes applied to unphased SNP genotype
data. In these 14 situations, the drop in power due to phase ambiguity was negligible, averag-
ing 0.4 per cent. Therefore, after allowing for phase ambiguity in these situations, it remained
the case that the marginal analysis of haplotypes dominated the marginal analysis of SNPs.
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Figure 3. Power curves for marginal and joint genetic association tests when disease susceptibility is
conferred by a haplotype with a co-dominant e�ect. See the legend to Figure 2 for details. Within
panels, abscissa values are arranged from the least common to the most common haplotype in the gene.

Interestingly, in both Figures 2 and 3, the power curves for the joint analysis of SNPs
and the joint analysis of haplotypes had similar shapes. Joint analysis of SNPs in frequently
had higher power when disease susceptibility was conferred by a SNP (Figure 2), while joint
analysis of haplotypes frequently had higher power when disease susceptibility was conferred
by a haplotype (Figure 3). Presumably, in Figure 3, these curves would be more similar in
magnitude if the linkage phase was unknown.
Next, we considered the power of the omnibus test combining the marginal test of SNPs

with the joint test of haplotypes. When disease susceptibility was conferred by a SNP
(Figure 4), the omnibus test closely tracked the marginal test of SNPs, which was the more
powerful of the two component tests in these situations. Similarly, when disease susceptibil-
ity was conferred by a haplotype (Figure 5), the omnibus test closely tracked the joint test
of haplotypes, which was generally the more powerful of the two component test in these
alternative situations.
The trends apparent in Figures 2 and 3 were also seen in situations where disease suscep-

tibility was conferred by a SNP or haplotype with a dominant e�ect (data not shown). For
recessive models, the same qualitative �ndings were also observed, but as expected, the actual
power to detect association is considerably lower.
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Figure 4. Power curves for the omnibus test when disease susceptibility is conferred by a SNP with a
co-dominant e�ect. See the legend to Figure 2 for details. Power curves are shown for the marginal
test of SNPs, the ideal joint test of haplotypes, and the omnibus test that combines these two. For
each situation, power was estimated from B=1000 replications of studies with n1 = n0 = 300 cases and

controls; omnibus test p-values were estimated from 1000 permutations.

3.2. FDR control for tests of multiple candidate genes

We considered speci�c situations de�ned using the entire panel of genes, and assessed the
actual FDR and power of the two-stage testing approach (Table III).
Each of the two-stage testing approaches controlled the expected proportion of falsely re-

jected genes. In theory, the expected gene-level FDR equals (G0=G)q, where G0 is the number
of genes in the panel that are not associated with disease. The power of the approximate om-
nibus test was intermediate between the two-stage Simes and the two-stage haplotype analysis.

4. DISCUSSION

Case–control association analysis of multiple SNPs or haplotypes in a single gene presents a
statistical multiple comparisons problem. So too does analysis of multiple genes in a panel of
candidates. Statistical multiplicity problems will likely increase over time, as genotyping tech-
nologies advance and more genes and more variants within genes are probed. Ultimately, all
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Figure 5. Power curves for the omnibus test when disease susceptibility is conferred by a haplotype
with a co-dominant e�ect. See the legend to Figure 4 for details. Within panels, abscissa values are

arranged from the least common to the most common haplotype in the gene.

the common variants within a gene or gene region could be investigated. This comprehensive
strategy has been advocated as the approach of choice once the technology permits it [35].
On a small scale, this is precisely the strategy we investigated here. Assuming that our gene
panel is representative, our results may provide some guidance about how to analyse such
gene-based studies.
In our panel, when disease susceptibility was conferred by a SNP, the marginal test of SNPs

had similar or higher power than the joint test of SNPs, the marginal test of haplotypes,
and joint tests of haplotypes. Conversely, when disease susceptibility was conferred by a
haplotype, the marginal test of haplotypes had similar or higher power than the other tests
considered. Future studies are needed to elucidate circumstances under which the impact of
phase ambiguity is large enough to negate the possible advantages of an ideal, phase-known
haplotype analysis. However, in the limited number of situations considered here, there was
only a minor average loss of power due to phase ambiguity. For situations where the genetic
susceptibility mechanism is uncertain—and this may be most of the time—the omnibus test
combining SNP and haplotype analysis appears to closely track the more powerful of the two
component tests, which is generally unknown. In the light of our results, it appears that an
omnibus test combining the marginal model of SNPs with the marginal model of haplotypes
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Table III. FDR and power for two-stage gene-panel analysis.

Gene-speci�c tests

Situation∗ Marginal test of SNPs Joint test of haplotypes Omnibus test‡

Power† FDR† Power FDR Power FDR
0 : Complete null 0 0.044 0 0.052 0 0.038
1 : SNP5 :CASP8 0.392 0.031 0.278 0.035 0.333 0.027

SNP3 :CTLA4
SNP8 :SDF1

2 : SNP1 :CASP10 0.741 0.027 0.639 0.034 0.676 0.026
SNP3 :CFLAR2
SNP9 :GAD2

3 : SNP1 :CASP10 0.665 0.040 0.534 0.047 0.607 0.036
4 : HAP1 :CASP8 0.209 0.039 0.492 0.047 0.419 0.036
5 : HAP1 :H19 0.476 0.029 0.496 0.035 0.484 0.025

HAP2 : INS
HAP1 :TCF8

6 : HAP1 :CASP8↑ 0.845 0.037 0.917 0.047 0.901 0.035
HAP2 :CASP8↓

7 : HAP2 :GAD2 0.628 0.031 0.471 0.041 0.568 0.029
SNP4 :TCF8

8 : HAP2 :GAD2↑ 0.582 0.033 0.441 0.044 0.518 0.032
SNP4 :TCF8↓

∗The speci�ed alleles increased disease risk by 1.5-fold per copy; as noted, in situations 6 and 8, haplotype 2
in CASP8 and SNP 4 in TCF8 decreased the risk by 1.5-fold per copy.

†For each situation, Power and FDR were estimated from B=10 000 replications of studies with n1 = n0 = 300
cases and controls. Power was de�ned here as the expected proportion of truly associated genes that are found
to be signi�cant.

‡The omnibus test combined a marginal test of SNPs with a joint test of haplotypes using the Bonferroni
correction.

would have been slightly more powerful in the tested situations where a single haplotype
conferred susceptibility. We suspect the advantage of this particular omnibus test would be
diminished if the susceptibility model was more complex.
Our results have implications for a haplotype-�rst strategy. Haplotype analysis can be very

e�cient in the laboratory when tag SNPs are selected [34, 36], allowing large genomic re-
gions to be probed. However, as our examples illustrate, if haplotype analysis is negative for
association, this does not necessarily mean that the gene is completely negative. Testing hap-
lotypes �rst appears to be a sound strategy for a �rst-pass study, especially of large genomic
regions, but it is clear that negative regions might require additional testing of SNPs. Hence,
the comprehensive strategy we study here may ultimately be necessary.
Three key limitations of our simulation study must be noted. First, the nine-gene panel

cannot be entirely representative of the human genome; Johnson and colleagues selectively
resequenced the panel’s genes over non-contiguous regions. Therefore, our haplotype structures
might provide an idealized and perhaps overly simplistic model of LD. Second, the non-
null situations we considered in Figures 2–5 might be overly simplistic, since only a single
SNP or haplotype conferred susceptibility. Third, there is no guarantee that the comparative
performance of the tests will be the same as indicated here, if only a limited number of SNPs
are genotyped in a candidate gene. However, although the existence of non-typed SNPs might
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result in a loss of power, the tests we describe here should nonetheless control the type I
error over the markers that are available for analysis.
For gene-panel analysis, we considered only the BH-FDR procedure for this report. Our

main objective was to con�rm, in a series of examples, the common-sense notion that the better
the base test, the better the gene-panel analysis. One limitation of the BH-FDR procedure has
been noted [37]. When the dependency assumptions are met, it is guaranteed to control the
FDR on average over repeated experiments. However, it is not guaranteed to control the FDR
within a set of rejected hypotheses from a particular experiment, called the conditional FDR.
Procedures have been developed to control the conditional FDR in the context of large families
of random independent test statistics with identical distributions for both the null and the non-
null hypotheses [38]. In this setting, when the fraction of non-null hypotheses is substantial,
conditional FDR procedures can be more powerful than unconditional FDR procedures. This
approach has proven to be popular in microarray data analysis [39]. It is not yet clear whether
these approaches are applicable to association analysis of moderate-sized gene panels with
heterogeneous test statistics and a low prior probability of association. If the signal-to-noise
ratio in a gene panel was thought to be high a priori, both conditional FDR and other
unconditional FDR procedures might be more powerful than the BH-FDR procedure [40–42].
We see many opportunities to re�ne and extend both FWER strategies for candidate gene

analysis, and FDR strategies for gene-panel analysis. For candidate gene analysis, it might be
advantageous to augment the trend test to re�ect model uncertainty [43]. We are developing
a resampling-based multiple test procedure for SNPs that appears to provide 3 per cent higher
power on average than the marginal test of SNPs studied here. The resampling-based test
can also be combined with a haplotype analysis of unphased SNP genotype data to yield
a sharper omnibus test. For gene-panel analysis, it would be helpful to have power and
sample size guidelines. For a given FDR procedure and sample size, if the panel contains
m1 truly associated genes with given e�ect sizes, how many unassociated genes m0 can also
be considered before the expected proportion of associated genes that is detected falls to
unacceptable levels?
For investigators with genetic association data in hand, multiple comparisons procedures

can help to balance the desire for power against the implicit costs of false positives, and
possibly help to diminish the prevalence of false positive reports in the literature [20, 44–46].
Perhaps the best solution to the multiplicity problem is to assemble good panels of candidate
genes. For this purpose, substantive knowledge is essential, but statistical methods such as
meta-analysis and Bayesian inference might also play a role.
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